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FN net thrust available

The paper presents the methods, instrumenta-

tion, and difficulties associated with drag
measurement of the X-29A aircraft. The initial

performance objective of the X-29A program empha-
sized drag polar shapes rather than absolute drag
levels. Priorities during the flight envelope
expansion restricted the evaluation of aircraft

performance. Changes in aircraft configuration,
uncertainties in angle-of-attack calibration, and
limitations in instrumentation complicated the
analysis. Limited engine instrumentation with

uncertainties in overall in-flight thrust accuracy
made it difficult to obtain reliable values of

coefficient of parasite drag. The aircraft was
incapable of tracking the automatic camber control

trim schedule for optimum wing flaperon deflection
during typical dynamic performance maneuvers; this
has also complicated the drag polar shape modeling.
The X-29A was far enough off the schedule that

the developed trim drag correction procedure has
proven inadequate. Despite these obstacles, good
drag polar shapes have been developed throughout
the flight envelope. Preliminary flight results

have compared well with wind tunnel predictions.
A more comprehensive analysis must be done to
complete the performance models. The detailed
flight performance program with a calibrated

engine will benefit from the experience gained
during this preliminary performance phase.

Nomenclature

ACC automatic camber control

CD coefficient of total drag

CDi coefficient of induced drag

CDmi n coefficient of parasite drag

CL coefficient of lift

cg center of gravity

D aircraft drag

Fex excess thrust

FG gross thrust

*Chief Engineer, X-29 Program, AIAA Member.
**Performance Engineer, X-29 Program.

tAerodynamics Engineer, X-29 Program.

CPerformance Engineer, X-29 Program, AIAA Member.

FCS flight control system

FDMS flight deflection measurement system

FSW forward-swept wing

normal load factor

aircraft lift

LED light-emitting diode

MCC manual camber control

nz wind-axis normal load factor

dynamic pressure

reference wing area

gross weight of aircraft

angle of attack

B

ACD

angle of sideslip

incremental change in coefficient

of drag

6c canard deflection

6f flaperon deflection

k s strake flap deflection

Introduction

Aircraft performance modeling to obtain
detailed thrust,drag models has been evolving for
a number of years. The objectives of dynamic

flight techniques, precise thrust-drag accounting,
advanced modeling techniques, and new in-flight
instrumentation have been to develop the most
accurate aerodynamic drag model of the airframe.
External factors such as highly augmented flight
control systems, complex inlet-engine combina-

tions, and aeroelastic effects have complicated
the modeling task. Examples of an extensive
effort in detailed thrust-drag modeling were the
studies undertaken on the transonic aircraft tech-

nology F-IlIA project I and the XB-7O program.2-5

The advanced technology demonstrator X-29A
research aircraft has provided data for the
performance modeling of a highly unstable,
highly augmented, three-control=surface air-



craft with a forward-swept-wing/canard aerody-

namic configuration.

The x-2gA project was initiated by the Defense

Advanced Research Projects Agency in 1977. The

aircraft was designed and built by Grumman Aero-
space Corp. In October 1984, it was shipped to

the Dryden Flight Research Facility of NASA Ames
Research Center (Ames-Dryden), with its first

test flight conducted on December 14, 1984. The
flight test team consisted of personnel from Ames-
Dryden, the U.S. Air Force Flight Test Center,
and the Grumman Corp.; Ames-Dryden was the respon-
sible test organization.

The primary objective of this phase of the

X-29A program was to expand the I-g and maneuver
flight envelopes. This took priority over other
flight research objectives such as performance and

flying qualities. 6 The performance maneuvers

during this test phase were limited. The emphasis
was to obtain accurate induced drag polar shapes
over the Mach number range rather than to obtain
absolute drag levels. This paper describes the

challenges encountered in determining the prelimi-
nary drag polar model for the X-29A aircraft. It
includes a discussion Of the test technigues, the
aircraft instrumentation system, the limitations

in obtaining flight data, and the difficulties
encountered in the analysis.

Aircraft Description

The X-29A aircraft (Fig. I) is a single-seat,

fighter-type aircraft with a forward-swept wing
(FSW). It has a highly relaxed static stability

that is nominally set at a 35-percent negative
static margin. The FSW has upper- and Iower-wlng
skins of graphite-epoxy composite, Aeroelastic

tailoring is used to control wing deflection and
to inhibit wing structural divergence. The thin
supercrltical airfoil has a cross section of
5 percent mean chord thickness with no leading-

edge devices; it incorporates trailing-edge flap-
erons with a manual camber control (MCC) flight

control mode and an automatic camber control (ACC)
mode. The double-hinged flaperons are in three

sections on each wlng with mldwing and outboard
flaperons driven by a single actuator. They pro-
vide high lift during takeoff and landing and
provide variable camber to increase aerodynamic
efficiency over the entire dight envelope. The

33.73 ° quarter-chord forward sweep of the wings is
complemented by close-coupled canards and aft-
mounted strake flaps. The canards, flaperons, and
strake flaps work together for trim and pitch con-

trol. Full-span differential flaperons provide
roll control, and a single-piece rudder gives yaw
control. Canards deflect from 30° leading edge up
to 60 ° leading edge down. Flaperons travel from
-I0 ° trailing edge up to 24.75 ° trailing edge

down. Strake flaps have a full ±30 ° of travel.
A digital-analog triplex fly-by-wire flight
control system (FCS) has a 40-Hz update rate in

each flight axis to artificially stabilize the
large negative static margin of the aircraft.

The MCC wing mode allows the pilot to set

fixed, discrete flaperon positions In 5° incre-
ments from -5° trailing edge up to 24.75 ° traillng

edge down. The flaperons remain fixed in this

mode until the canard stall-protection logic
forces the flaperons to move. Presently, MCC
is used for fixing the wing configuration for

structural wing divergence clearance; little per-
formance work in the MCC flaperon mode has been
done to date.

The aircraft is powered by a single General
Electric F404-GE-400 afterburning turbofan engine
that is in the 16,000-1b-thrust class. The side-

mounted engine inlets are a simple, fixed config-
uration that optimizes flight in the transonic
region. Four internally mounted fuel tanks have a
total capacity of 4000 Ib, which results in an
aircraft takeoff gross weight W of 17,800 lb.

The X-29A research aircraft integrates several

multidisciplinary technologies in a synergistic
manner for conducting flight research of the indi-
vidual technologies and for validating the tech-
nological data base used to develop the aircraft.
The technologies as related to the predicted

increased performance capabilities of the X-29A
aircraft include the FSW and the close-coupled
canard for a wing-canard elliptical lift span-

loading. The FSW has less leading-edge sweep than
an aft-swept wing with an equivalent shock sweep
angle. The incorporated thin supercrltical air-
foil has experimentally demonstrated less profile

drag for decreasing leading-edge sweep. Thus, the
FSW will have less profile drag than the equiva-
lent aft-swept wing and will be able to sustain
higher llft coefficients.

The wlng-canard combination provides mutually
beneficial aerodynamic interaction; that is, the
wing upwashes the canard to provide increased
effective angle of attack _ for the canard, and

the canard downwashes the wing to delay root
stall. The wing root is characteristically where
stall begins on an FSW aircraft. The wing incor-

porates a discrete variable-camber system that,
together with relaxed static stability and the

ACC mode, provides optimum aerodynamic efficiency
with minimum trim drag throughout the flight enve-

lope. A more detailed discussion of the specific
advanced aerodynamic technologies can be found in
Ref. 7.

Wind Tunnel Data Base

Grumman Aerospace Corp. conducted three wind

tunnel tests during the development of the X-29A
aircraft. These included tests conducted in May
1982 at the NASA Ames Research Center 11-Foot

Transonic Wind Tunnel and the 9- by 7-Foot Super-

sonic Wind Tunnel facilities 8 and tests conducted

in March 1983 at the Grumman 7- by 10-Foot Low-

Speed Tunnel using a rigid I/8th-scale model. A
supplemental test was carried out in July 1983 by

Ames-Dryden at the NASA Ames 1t-Foot Tunnel. 9

The primary objectives of these tunnel tests
were to obtain structural loads data and aero-

dynamic derivative data, and not to measure mini-

mum coefficient of drag CDmi n, The wind tunnel

data were incorporated into a full nonlinear aero-
dynamic data base that has been adjusted for

structural flexibility. I0 These data provided
the basis for the aerodynamic and flight controls



analysisandare incorporatedinto the X-29A
simulator. TheWindtunneldatawerealso used
to developthe ACCschedulefor maximumaero-
dynamicefficiencyandto obtaina detailed
measurementof dragbuildupin the individual
airframecomponents.11

Flight Test Instrumentation

The x-2gA onboard instrumentation system con-
sists of constant-bandwidth frequency modulation
and a 10-bit pulse-code modulation system. The

pulse-code modulation system has five separate
modules that are combined in an interleaver unit

with FCS information from an AirResearch 429 data
bus. The aircraft is instrumented for structural

loads and dynamics, flight controls, stability and
control, aircraft subsystems, and performance.
Parameters are measured at various sampling rates
from 25 to 400 samples/sec. All data are telem-

etered to the ground for real-time monitoring and
data analysis and represent the sole source of
data acquisition. Control room displays include
the usual eight-channel strip charts and cathode-
ray-tube displays of digital and time history

analog data as well as computed results.

The left wing, canard, and strake flap are
instrumented with a total of 179 flush-mounted

pressure measurement points in 5 rows on the wing,
2 rows on the canard, and I row down the strake

and strake flap. Twelve infrared light-emittlng
diode (LED) sensors that form part of the flight
deflection measurement system (FDMS) are mounted
on the upper surface of the right wing. The sen-

sor receiver is mounted in the fuselage side at
the wing root (Fig. 2). Each wing has a flaperon
structural excitation shaker system with an eccen-
tric rotary mass (Fig. 3) mounted at the base

of the outboard flaperon actuator housing. The
shaker excitation system and the FDMS were tem-
porary external flight test instrumentation and
were not part of the basic aircraft. They did,

however, have some aerodynamic effect on the
aircraft.

The performance instrumentation package con-
sists mainly of two separate body-mounted three-
axis accelerometer systems. One is referred to as

the center-of-gravity (cg) accelerometer package;
it has larger range accelerometers than the second
system. Its longitudinal accelerometer range is
±I g, its normal accelerometer range is from -3 g

to B g, and its lateral accelerometer range is
±I g. The second system referred to as the dynamic

performance cg package has smaller accelerometer

ranges specifically sized for dynamic performance
pushover-pullup maneuvers. Its longitudinal accel-
erometer range is ±0.6 g, its normal accelerometer
range is -1 g to 3 g, and its lateral accelerom-
eter range is _Ot6 g- In addition, a three-axis

rate gyro package measures pitch, roll, and yaw
attitudes and rates, as well as angular accelera-
tions. The sampling rate for these parameters is
120 samples/sec. A Grumman F-14 flight-test nose
boom (Fig. 4) was used to obtain pitot static

measurements. Vanes on the nose boom provided
measurements of _ and angle of sideslip B.

The F404-GE-400 engine has the General

Electric basic kit instrumentation that measures

inlet temperature, compressor and turbine speeds

and pressures, combustor pressure, and turbine
exhaust temperature. This instrumentation makes

use of a single production exhaust pressure

measurement on the turbine and a main-engine fuel
mass flowmeter. The basic kit instrumentation

was primarily intended to monitor engine operating
levels and engine health, but not to accurately

measure In-flight gross thrust FG. The kit lacks

the volumetric main engine and afterburner fuel
flow measurements and the 20-probe turbine exhaust

pressure rake used in the full flight-test thrust
kit. The installed engine had all the full F-18

flight-test thrust components. However, it was
decided early in the x-2gA program that the addi-
tional components of the full thrust kit would not

be connected because the primary project objective

in drag measurement was to obtain drag polar shapes
only. Sensitivity analysis by the engine manufac-
turer has shown that the uninstalled thrust uncer-

tainty level of the basic kit is nominally
±5.0 percent and could be as high as ±7.g percent,
depending on the flight condition. The In-flight
thrust calculation is presently unable to calcu-
late in-flight FG in afterburner operation due

to a lack of afterburner fuel flow. Two of the
project F404 engines, serial numbers 215209 and

215213, have full thrust kits in place; one
engine, serial number 215215, has only the basic

kit. Table I summarizes the engine configurations
and their use.

Because of the subsequent requirement for more

accurate measurement of in-fllght FG, and thus

drag D, and to assist in careful thrust-drag
accounting, X-29A engine serial number 215209 was

calibrated at the Propulsion System Laboratory of
NASA Lewis Research Center from late 1985 to early
1986. This was done using the full thrust kit and

selecting a test point matrix that covered the
entire X-29A flight envelope. About 160 test
points were measured from flight idle power to

maximum afterburnlng thrust. The resulting data
base was used to correct the generic In-flight
thrust computer program. In addition, pressures
in the nozzle afterburner were obtained at static
pressure orifices, and the data were used to
develop a simplified gross thrust method for

real-time analysis. 12

After the calibrated engine has been installed

and the thrust computer program corrected, the
corrected in-flight thrust computation accuracy is

predicted to be within ±1.5 percent. The real-
time simplified FG calculation is predicted to be

within ±1.8 percent. Reference 13 contains a sen-
sitivity analysis of the effect of various engine

parameter measurement errors on in-flight thrust
accuracy for the F404 engine.

FliBht Test Approach

The performance drag modeling maneuvers con-
sisted of dynamic maneuver techniques to obtain a
continuous a range. A 30-sec stabilized point
preceded the dynamic maneuvers. This was followed

by a 20-sec pushover-pullup maneuver from 1-g sta-

bilized flight to a pushover to 0 g and a pullup
to 2 g and then back to stabilized 1-g flight at
the power-for-level-flight condition. This
covered the lower to medium levels of coefficient

of lift CL. A windup turn at constant thrust and



Mach number was then flown from stabilized flight

to the specified load factor nz and/or the a limit

by exchanging altitude for airspeed to maintain
constant Mach number. The middle to high CL range
was developed with the windup turn.

The structural load limit was set at 6.4 g,
which was 80 percent of the design load limit and
was based on the fact that x-2gA was only proof-
loaded to the design load limit. Performance

maneuvers flown during the envelope expansion
process were limited initially to _ = 15° and to

the load factors cleared at the time of flight.
The maneuvers were also limited in buffet inten-

sity levels at the wingtip and were not to exceed
±4 g above the nominal load factor. All maneuvers
were flown from 10,000 to 40,000 ft.

Data Analysis

Aircraft CD and CL were calculated from the
equations

D FN - Fex
CD ....

qS qS

where

L nzW - FG sin
CL =_ =

qS qS

Fex = excess thrust

FN = net thrust available

L = aircraft lift

q = dynamic pressure

S : reference wlng area

The In-flight thrust calculation procedure is
extensive and can be found in Reference 14.
Reference 15 reports on a drag polar sensitivity

study that analyzed the error sources and their
relative magnitude in the CD and CL calculations.

The purpose of the drag correction procedure

in the performance analysis program was to adjust
the flight test data to the power-off, trimmed ACC
schedule configuration as used in the generation
of the wind tunnel data base. The method was only

capable of providing trim drag correction of the
data for _ < ±2° from the ACC trim schedule.

Similarly. the control surface schedules could
only be adjusted for control surface deflection up
to ±5 ° from the ACC trim schedule. Depending on
flight conditions, thls corresponded to drag
adjustments up to CL " 1.0.

Other drag corrections incorporated in the

analysis program included body-axis accelerometer
angular rate and acceleration adjustments. Thrust
corrections included estimated nozzle and spillage

drag, as well as calculated ram drag corrections.
A thrust moment contribution to the drag polar
was also taken into account. Trim drag adjust-
ments for off-reference cg were also made.

The trim drag correction program could not be
used on some flight data where the aircraft
control surface configuration was substantially

off the ACC schedule. A comparison program was
used to correlate the fllght-test dynamic polar
and lift curves with the equivalent wind tunnel
data predictions. The program used the flight

time history of flight conditions, cg, m, and
control surface positions to query the_l'odynamlc
data base for the polar and lift curve data, In

this way, untrimmed flight results could be com-
pared to the wind tunnel data.

Aircraft Test Configuration

The X-29A external airframe configuration

has not remained fixed during the envelope expan-
sion phase of the program. To aid the in-fllght
monitoring of wing deflections, beginning with
flight 9, the FDMS was added to the surface of the

upper right wing. The twelve FDMS targets ranged
In size from 0.25 to 1.50 in high. The protuber-
ance drag contribution and the added skin friction

drag from localized turbulence from the FDMS

targets were difficult to measure; their effect on
the overall airframe drag is unknown.

Figure 5 shows the effect of the FDMS drag
increment on the drag polar model. For flow
visualization, flow cones and tufts were placed

on the upper surface of the left wing during
flights 12, 13, and 16. After flight 19, the
flaperon shaker excitation system was added to

each wing at the aft end of the outboard flaperon
actuator housing, A modified actuator fairing
was required to enclose the shaker (Fig. 6).
This probably changed the base drag behind the

wings.

Attempts to isolate the drag increments CD of

these configurations changes have been difficult

because of uncertain CDmin measurements. Maneuver

dynamics resulting in slightly different control

surface scheduling also added to the complexity
of determining CD. Figure 7 shows the drag

changes with and without the flaperon shaker
system installed.

An FCS software modification after flight 23

effectively changed the aircraft configuration at
certain flight conditions. The software change

corrected an anomaly in the ACC flaperon satura-
tion logic that was discovered early in the flight
program. The proper operation of the ACC logic is
to integrate the strake flap position to keep the
canards on their trim schedule as the flaperons
become saturated in the fully down position. The
anomaly occurred when the aileron inputs by the

pilot prevented the FCS computers from recognizing
the fully down flaperons as saturated. This con-

sequently did not allow the strake flaps to follow
the integration logic. The software change cor-

rected the problem by allowing the computers to
recognize the fully down flaperons as saturated
even with aileron input, However, this changed
the overall trimmed ACC schedule tracking of the

canard and strake flaps during maneuvering and
resulted in different trim drag levels. Figure B
shows the reduced drag improvements at higher CL

with the modified FCS software. Table 2 summa-

!]!l!i



rizes the configuration changes of the x-2gA

during the envelope expansion phase.

Results and Discussion

Several factors affected the aerodynamic per-

formance of the X-29A aircraft and the analysis
during the envelope expansion phase: (1) the
addition of flight test instrumentation that
influenced external aerodynamics, (2) the FCS

modifications that changed control surface posi-
tions, (3) the off-ACC mode schedule as a function

of maneuver dynamics, (4) the difficulties in

obtaining an accurate a calibration, and (5)
uncertainties of the thrust accuracy. The last

two factors led to uncertainties in CDmin values.

The _ calibration was particularly difficult
on the X-29A aircraft. Calibration results from
the pitch-attltude method were not consistent

because the aircraft was difficult to stabilize
at a given airspeed and altitude. The x-2gA

aircraft attempts to stabilize at a zero pitch
rate. Even with 40-Hz anti-aliasing filters,

a and B measurements from the nose-boom system
were very noisy, due to aeroservoelastic interac-
tion with the modal characteristics of the nose
boom. This contributed to data scatter and an

unexplained I° bias in the a calibration results.
In addition, both _ and B measurements suffered

from small (±0.5 °) random step changes on

occasion during stabilized flight, These step
changes are believed to be due to local flow angu-
larities on the nose boom, which impact the boom
vanes. The effect of uncertainty on the drag
polar shape due to a calibration variations

(Fig. g) has a significant influence on drag polar
modeling. This error is introduced through the
a and B transformation of body-axis accelerations

to wind-axls accelerations and in the changing of
thrust components to lift. Efforts to obtain an

accurate calibration are continuing.

The FCS was designed for overall aircraft sta-

bilization of an unstable airframe and only washes
out to the ACC schedule as the aircraft stabilizes
at a given pitch rate. The ACC mode, which is

intended to hold the optimum L/D ratio during
trimmed flight, was not successful in staying on
schedule in highly dynamic maneuvers. As indi-

cated in Fig. 10, the flaperonswere as much as 12°
off the ACC schedule as a function of maneuver

rate during windup turns. The canards were as
much as 10° off the ACC schedule, and the strake

flaps as much as 7° off. Being off the optimal
aerodynamic configuration resulted In an added
drag penalty for the airframe. The ACD between

the untrimmed dynamic polar model and the drag
polar model predicted from the trimmed ACC sched-

ule was as much as 250 drag counts. Windup turn
maneuver rates were varied from 5 to 20 sec, which
did not seem to affect the measured drag levels in
the low subsonic Mach regime. However, the maneu-

ver rate did show an effect on dynamic drag levels
at transonic Mach numbers, The dynamics levels
of the maneuvers have not been fully adjusted to
the trimmed polar model in the data reduction com-
puter programs.

Grumman Aerospace Corp. suggested a method for

improving the flaperon tracking of the ACC sched-

ule by increasing the gain on the FCS canard error

slgnal that drives the flaperon rate. Increasing
the gain increases the flaperon ACC tracking rate
during the dynamic maneuvers. The present gain of
0.4 would therefore be increased to 1.6. This

would bring the aircraft control surfaces very
close to the trimmed ACC schedule, with only a

small degradation in the FCS stability margins.
(The FCS has minimum margins of 3 dB in gain and
22.5 ° in phase.) Predictions show that thls

increased gain in the canard error signal can

improve performance by more closely tracking the
optimum ACC schedule during maneuvering. It also
allows the drag correction procedure to adjust for
the remaining off-schedule positions of the

control surfaces. The plan is to implement this
method during the X-29A follow-on flight research
phase in 1987.

As shown in Fig. 11, the net scatter in the

drag polar data is about ±50 drag counts at a
given Mach value, A calibrated engine is expected
to improve the overall polar results; however,

this data scatter is considered sufficient flight
test results to determine the drag polar shapes,
The present plan is to install the calibrated
F404 engine in the aircraft in late 1986 for the
detailed follow-on flight research phase in 1987.

Typical drag polar results are shown in

Fig. 12. The preliminary dynamic untrimmed flight
results show the x-2gA performance is at least

as good as predicted. The consistency of the
measured polar shapes are particularly good. The

CDmi n values are not considered reliable until the

calibrated engine is installed. This engine will
also allow for a more accurate thrust-drag ac-
counting and will possibly improve the under-
standing of the polar shapes and the individual
ACD increments more precisely.

Concluding Remarks

The performance drag polar modeling of the
X'29A advanced technology aircraft during the

initial flight envelope expansion phase has pre-
sented numerous challenges. External airframe
configuration changes have added uncertainties
to the flight test results. Uncertainties in
the angle-of-attack calibration have affected the

polar results and have been difficult to analyze.
Maneuver dynamics have affected the tracking of
the automatic camber control trim schedule for

optimum wing flaperon deflection. This in turn
affected the untrimmed data, which have larger
control-surface deviations than the analysis

programs can successfully correct.

The challenges of the thrust-drag accounting

and analysis have nevertheless yielded reliable
results, particularly in determining the induced
drag polar shapes. The preliminary polar shapes
have met or slightly exceeded predictions for the

Mach number range tested. Due to the questionable
in-flight thrust calculation accuracy of the basic
kit of the General Electric F404-GE-400 engine,
the measured minimum parasite drag levels of the
X-29A aircraft have not been considered accurate.

Better accuracy will be provided when the cal-
ibrated engine, serial number 215209, is installed

in the aircraft. In addition, future plans for



the follow-on flight research phase include the
installation of an improved nose-boom system for
better measurements of angle of attack and side-

slip, airspeed, and altitude. Experience gained
from this preliminary performance phase of the

x-2gA aircraft should benefit the follow-on per-
formance research phase.
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Table I Engine configuration

F404
Instrumentation Use Calibration

engine

215209 Full thrust kit Performance flights Yes

215213 Full thrust kita Envelope expansion No

215215 Basic kit Spare No

aOnly basic kit part of full thrust kit activated for flight

envelope expansion phase.



Table2 Aircraft configuration

Flight Flaperon Tufts Original Modifiednumber FDMS shaker ACC ACC

I No No No Yes No
9 Yes No NO Yes No

12,13,16 Yes NO Yes Yes No
19 Yes Yes NO Yes No
23 to 71 Yes Yes No No Yes

%. Nose slrakes Canard St_ka flap /

¢'" /

I I _ ,:'_ II 2In

IL.  .o -  Z 25.percent/
Vertical height, 14 ft 9.5 in.

6020

ECN 33297-009

r£g. 1. Adtmnoed te_hnoZog!t demonstrat.or, X-29A
aircraft.
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Fig. 3. Flaperon shaker system.
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Fig. 4. Flight-test nose boom.

6010



-- O Right data
--- Predicted data

CDmln

O
O--..-.--

o
n%

+ O =
_[-fAC D 100

I/ drag counts
_t J_____L_

2 4 6

O

O

1
8

f Aircraft configuration
change with FDMS
targets

I I I I
10 12 14 16

X-29A flight number

6011

Fig. 5. Effects of FDMS ta_ets on d_g pol_rr
mode I.
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actuator fairing installed

6012

Fig. 6. rlaperon shaker 8getem fairing.
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rig. 7. Effe_+_'-oj+8h_++_ s_,-?o_,g_ o_-ae_o-

C L

/ O With original FCS
/ [] With modified FCS

/ -_1 1,4- AC D = 100 drag counts

CD
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Fig. 8. Effeot of _S eoft_re _anges on aero-
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Pig. 9. Effect of uariatlon8 in angZ_-of-attack
_Zibratio_ on fZigh_ data.

10



ACC schedule

--- Flight test
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rig. lo. Dy_n_o maneuver effects.
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Drag po_r data scatter.
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C L

C L
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0 Flight test data

Predicted data

I_ _ With stabilized ACC
--- Based on flight time

histories

_ ACDi = 100 drag counts

CD i

(a) Maoh 0.6.
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_test data

_" Predicted data

-- With stabilized ACC
c_' --- Based on flight time

_p' histories
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(b) lqaek 0.9,

F£g. I_. Compar_so_ of fZight test and predicted

data _ith induced drag.

11



1. Report No.

NASA TM-88282

2. Government Acce_ion No,

4 Title and Subtitle

CHALLENGES IN MODELING THE X-29 FLIGHT TEST PERFORMANCE

7 Author(s} John W. Hicks, NASA Ames-Dryden Flight Research Facility;

Jan Kania, Air Force Flight Test Centers EAFBI and Robert Pearce

and Glen Mills, Grumman Aerospace Corp.

g. Performing Organization Name and Addreu

NASA Ames Research Center

Dryden Flight Research Facility

P.O. Box 273

Edwards, CA 93523-5000

12. SDonsoring Agency Name and Addr_

National Aeronautics and Space Administration

Washington, DC 20546

3, Rectpient'$ Catalog No.

5. Report Date

January 1987

6. Performing Organization Code

8. Performing Organization Report No.

H-1395

10. Work Unit No.

RTOP 533-02-51

11. Contract or Grant No.

11 Type of Report and Period Covered

Technical Memorandum

14. Sponsoring Agency Code

15. Supplementary NotN

Prepared as AIAA Paper 87-0081 for presentation at AIAA 25th Aerospace Sciences Meeting, Reno,

Nevada, January 12-15, 1987.

16, Abstract

The paper presents the methods, instrumentation, and difficulties associated

with drag measurement of the X-29A aircraft. The initial performance objective

of the X-29A program emphasized drag polar shapes rather than absolute drag

levels. Priorities during the flight envelope expansion restricted the evalu-

ation of aircraft performance. Changes in aircraft configuration, uncertainties

in angle-of-attack calibration, and limitations in instrumentation complicated

the analysis. Limited engine instrumentation with uncertainties in overall In-

flight thrust accuracy made it difficult to obtain reliable values of coeffi-

cient of parasite drag. The aircraft was incapable of tracking the automatic

camber control trim schedule for optimum wing flaperon deflection during typical

dynamic performance maneuversf this has also complicated the drag polar shape

modeling. The X-29A was far enough off the schedule that the developed trim

drag correction procedure has proven inadequate. Despite these oSstaclss, good

drag polar shapes have been developed throughout the flight envelope. Prelim-

inary flight results have compared well with wind tunnel predictions. A more

comprehensive analysis must be done to complete the performance models. The

detailed flight performance program with a calibrated engine will benefit from

the experience gained during this preliminary performance phase.

17, Key Wor_ (Suggested by Author(s)) 18. Distribution Statement

Aircraft performance Unclassified -- Unlimited

Drag polar modeling

Dynamic flight test technique

Forward swept wing

Lift and drag STAR category 05

19. Security Cta_if, (of this report) 20, Security Cla_if. (of this _l 21. No. of Pag_ 2l Price"

Unclassified Unclassified 12 AO2

eFor =ale b9 the Ratlon41 Technical Information Service, SprirJgfield, Virginia 22161.


